Flow cytometry and cytogenomics in complicated polyploid complexes: examples from the genus *Cardamine*

Karol Marhold^{1,2}, Marek Šlenker¹, Judita Zozomová-Lihová¹, Katarína Skokanová¹ and Terezie Mandáková^š

¹Plant Science and Biodiversity Centre, Bratislava, Slovak Republic ²Department of Botany, Charles University, Prague, Czech Republic ³Central European Institute of Technology, Masaryk University, Brno, Czech Republic

Cardamine yezoensis JP, Sakhalin

Cardamine schinziana JP, Hokkaido endemic

Cardamine torrentis JP

Cardamine amariformis Korea

Cardamine valida JP, Sakhalin, Russian Far East

Published chromosome numbers from Japan and Russian Far East

۵.

Taxon	2 <i>n</i>	Locality	Author	Original determination	Note
<i>C. torrentis</i> s.l. (<i>C. valida</i>)	32	Japan, Hokkaido	Kurosawa, 1981	C. yezoensis	Only <i>C. valida</i> was found at this locality in 2004.
<i>C. torrentis</i> s.l. (<i>C. valida</i>)	32	Japan, Hokkaido	Kurosawa, 1981	C. yezoensis	Only <i>C. valida</i> was found at this locality in 2004.
<i>C. torrentis</i> s.l.	56	Japan, Honshu	Kurosawa, 1981	C. torrentis	
<i>C. torrentis</i> s.l. (<i>C. valida</i>)	32	Russia, Sakhalin	Rudyka, 1984	C. yezoensis	Specimen deposited in VLA was revised (incomplete plants only).
<i>C. torrentis</i> s.l. (<i>C. valida</i>)	16 => 32	Russia, Sakhalin	Sokolovskaya, 1960	C. yezoensis	Most likely referring to the same locality and the same chromosome count as the next record.
C. torrentis s.l. (C. valida)	16 => 32	Russia, Sakhalin	Probatova and Sokolovskaya, 1988	C. yezoensis	Specimens deposited in LEU and VLA were revised.
C. yezoensis	72	Japan, [Hokkaido	Nishikawa, 1986	C. yezoensis	
C. yezoensis?	46-48	plants from Botanical Garden Edinburgh	Manton, 1932	C. leucantha prol. yezoensis	•No voucher specimen was found in herbaria CGE, LDS and MANCH.

Marhold et al., Annals of Botany 2010; Lihová et al., Australian Systematic Botany, 2010.

a.

Marhold et al., Annals of Botany 2010; Lihová et al., Australian Systematic Botany, 2010.

Marhold et al., Annals of Botany 2010; Lihová et al., Australian Systematic Botany, 2010.

Marhold et al., Annals of Botany 2010; Lihová et al., Australian Systematic Botany, 2010.

Marhold et al., Annals of Botany 2010; Lihová et al., Australian Systematic Botany, 2010.

Sometimes around 2000

Cardamine flexuosa:

tetraploid, morphologically variable

native in Europe and W Asia, reported as introduced to N & S America, E Asia, Australia, New Zealand, Africa

habitats: forests, forest clearings, streamsides, roadsides (gardens, orchards, fields, greenhouses)

Australia: C. aff. flexuosa (nurseries, pavement cracks, garden beds)

N America: C. flexuosa (?native), C. debilis Don (introduced, greenhouses, gardens)

Japan: *C. flexuosa* (paddy fields, crop fields, orchards)

China, India: C. flexuosa and C. hirsuta

Cardamine flexuosa and its relatives

comparative study of 19 putatively related taxa sampled worldwide ITS and *trnL-trnF* cpDNA seq.

Lihová, Marhold, Kudoh & Koch, 2006, Amer. J. Bot. 93: 1206-1221.

Localities of the first occurrences of *Cardamine occulta* in Europe

Marhold et al., 2016, PhytoKeys 62: 57–72.

Localities of the first occurrences of *Cardamine occulta* in Europe – two years later

Australia:

C. aff. flexuosa (nurseries, pavement cracks, garden beds) = C. occulta

N America:

- C. flexuosa (introduced),
- C. debilis Don (introduced, greenhouses, gardens) = C. occulta

Japan:

C. flexuosa (paddy fields, crop fields, orchards) = C. occulta

China, India: C. flexuosa and C. hirsuta = C. occulta

Annual of Ecology 2008

den: 10.11115.1363-2745.2009.01392.x

Ecogenomics of cleistogamous and chasmogamous flowering: genome-wide gene expression patterns from cross-species microarray analysis in *Cardamine kokaiensis* (Brassicaceae)

Shin-Ichi Morinaga¹³*, Atsushi J. Nagano⁵, Saori Miyazaki², Minoru Kubo⁴, Taku Demura⁴, Hiroo Fukuda⁴, Satoki Sakai¹ and Mitsuyasu Hasebe²³

Šlenker et al., 2018, Botanical Journal of the Linnean Society, 187: 456–482.

Locations of sampled populations of *Cardamine flexuosa*, *C. kokaiensis*, *C. occulta* and *C. scutata* in East Asia and Europe (nested picture). The scale bar indicate 500 km.

Šlenker et al., 2018, Botanical Journal of the Linnean Society, 187: 456–482.

Flow cytometry and chromosome number counts

Box-and-whisker plots of (A) relative genome size, and (B) relative monoploid genome size of *Cardamine flexuosa* (4*x*), *C. kokaiensis* (4*x*), *C. occulta* (8*x*) and *C. scutata* (4*x*); in total **585 plants**, **95 populations**. Whiskers are extended to the 5th and 95th percentiles. The fluorescence intensity of *Lycopersicon esculentum* (2C = 1.96 pg) was set to a unit value. Chromosomes of (A) Cardamine flexuosa (2n = 32), (B) C. kokaiensis (2n = 32), (C) C. occulta (2n = 64) and (D) C. scutata (2n = 32) counterstained by DAPI. Scale bars indicate 10 µm.

Slenker et al., 2018, Botanical Journal of the Linnean Society, 187: 456–482.

Origin of European Cardamine flexuosa

Genomic in situ hybridization (GISH) to mitotic chromosomes in the allotetraploid Cardamine flexuosa (2n = 32). GISH with total genomic DNA of Cardamine amara (red fluorescence; two overlapping chromosomes are indicated by a star symbol) and *Cardamine hirsuta* (green fluorescence) revealed two subgenomes contributed by ancestors of the two diploid species. Two pairs of translocation chromosomes (arrowheads) were identified by subsequent comparative chromosome painting (CCP) analysis.

Mandáková, Marhold & Lysák, 2014, New Phytologist 201: 982–992.

Origin of European Cardamine flexuosa

Both rearranged homeologues have undergone an identical pericentric inversion followed by a reciprocal translocation with breakpoints within both genomic blocks I, exchanging unequal proportions of the upper arms of progenitor chromosomes CA4 and CH4. Both chromosomes shared altered collinearity of blocks I and J, and differed by the length of their upper arms

Mandáková, Marhold & Lysák, 2014, New Phytologist 201: 982–992.

Parental-specific chromosome signatures uncovered the origin of *Cardamine scutata* (2n = 4x = 32)

Cardamine occulta (2n = 8x = 64)

Auto- and allopolyploid origin of Asian Cardamine

A: C. amara, P: C. parviflora, S: C. scutata,
K: C. kokaiensis, D: C. dentipetala, O: C. occulta

Comparative chromosome painting

multicolor fluorescence *in situ* hybridization on meiotic (pachytene) chromosomes

Comparative chromosome painting

